Scheme - G

Sample Test Paper-I

Course Name : All Branches of Diploma in Engineering & Technology Course Code : AE/CE/CH/CM/CO/CR/CS/CW/DE/EE/EP/IF/EJ/EN/ET/EV/EX/IC/IE/IS/ ME/MU/PG/PT/PS/CD/CV/ED/EI/FE/IU/MH/MI/DC/TC/TX/AU Semester : Second

Semester	: Second	1801(
Subject Title	: Engineering Mathematics	17216
Marks	: 25	Time: 1 Hour

Instructions:

a)

- 1. All questions are compulsory.
- 2. Illustrate your answers with neat sketches wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.

Q.1 Attempt any THREE of the following.

- a) Express in the polar form z = -1 + i.
- b) For what value of x , f(x) = f(2x+1), if $f(x) = x^2 3x + 4$.

c) Evaluate
$$\lim_{x \to 3} \left[\frac{x^2 - 5x + 6}{x^3 + 3x^2 - 18x} \right]$$

d) Evaluate
$$\lim_{x \to 0} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \right]$$

Q.2 Attempt any TWO of the following.

$$\frac{(\cos 3\theta + i\sin 3\theta)^3(\cos \theta - i\sin \theta)^4}{(\cos \theta + i\sin \theta)^2(\cos 2\theta + i\sin 2\theta)^{-3}}$$

- b) Using Euler's formula, prove that $\cos^2\theta + \sin^2\theta = 1$.
- c) If $f(t) = 50 \sin(100\pi t + 0.04)$, show that

$$f\left(\frac{2}{100}+t\right) = f(t).$$

Q.3 Attempt any TWO of the following.

a) If
$$f(x) = \log\left(\frac{x}{x-1}\right)$$
 then show that $f(a+1) + f(a) = \log\left(\frac{a+1}{a-1}\right)$

09 Marks

08 Marks

b) Evaluate
$$\lim_{x \to 0} \left[\frac{12^x - 4^x - 3^x + 1}{x^2} \right]$$

c) Evaluate
$$\lim_{x \to \pi/4} \left[\frac{2 - \sec^2 x}{1 - \tan x} \right]$$

Scheme - G

Sample Test Paper-II

Course Name : All Branches of Diploma in Engineering & Technology Course Code : AE/CE/CH/CM/CO/CR/CS/CW/DE/EE/EP/IF/EJ/EN/ET/EV/EX/IC/IE/IS/ ME/MU/PG/PT/PS/CD/CV/ED/EI/FE/IU/MH/MI/DC/TC/TX/AU

Semester: Second17216Subject Title: Engineering MathematicsTime: 1 Hour

Instructions:

- 1. All questions are compulsory.
- 2. Illustrate your answers with neat sketches wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.

Q.1 Attempt any THREE of the following.

- a) Using first principal find the derivatives of cos x.
- b) If $x = a \cos\theta$, $y = a \sin\theta$, Find $\frac{dy}{dx} at \quad \theta = \frac{\pi}{4}$
- c) Show that there exists a root of the equation $x^2 2x 1 = 0$ in (-1, 0) and find it approximately using bisection method by performing two iterations.
- d) Solve the following system of equations by using Gauss elimination method

x + y + z = 6, 3x - y + 3z = 10, 5x + 5y - 4z = 3

Q.2Attempt any TWO of the following

a) If u and v are differentiable functions of x , $y = \frac{u}{v}$, then Prove that

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

- b) Solve the equation $x^3 9x + 1 = 0$ using Regula falsi method (upto three iterations).
- c) Using Newton-Raphson method, evaluate $\sqrt[3]{100}$ performing three iterations.

09 Marks

Q.3 Attempt any TWO of the following

- a) If $13x^2 + 2x^2y + y^3 = 1$, find $\frac{dy}{dx}$.
- b) Solve the following equations using Jacobi's method (Perform three iterations)

10 x + y + 2z = 13, 3x + 10y + z = 14, 2x + 3y + 10z = 15

c) Solve the following equations using Gauss- Seidal method (Perform three iterations) 15x + 2y + z = 18, 2x + 20y - 3z = 19, 3x - 6y + 25z = 20

Scheme-G

Sample Question Paper

Course Name: All Branches of Diploma in Engineering and Technology

Course Code : AE/CE/CH/CM/CO/CR/CS/CW/DE/EE/EP/IF/EJ/EN/ET/EV/EX/IC/IE/IS/ME/ MU/PG/PT/PS/ CD/CV/ED/EI/FE/IU/MH/MI/AU

Subject Title : Engineering Mathematics

Marks : 100

Instructions:

- 1. All questions are compulsory.
- 2. Illustrate your answers with neat sketches wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary.
- 5. Preferably, write the answers in sequential order.

Q.1Attempt any TEN of the following

a) If
$$(3 + i)x + (1 - i)y = 1 + 7i$$
 find the value of x & y.

- b) Express in the form a+ib, $\frac{2+i}{1-i}$, where a, b $\in \mathbb{R}$, $i = \sqrt{-1}$.
- c) IF $f(x) = x^3 3x^2 + 5$, find f(0) + f(3).
- d) Define even and odd function.

e) Evaluate
$$\lim_{x \to 2} \left[\frac{x-2}{\sqrt{x} - \sqrt{2}} \right]$$

f) Evaluate
$$\lim_{x \to 0} \left[\frac{\tan 5x}{\sin 6x} \right]$$

g) Evaluate
$$\lim_{x \to 0} \left[\frac{e^{\sin 3x} - 1}{2x} \right]$$

h) If
$$y=e^{3x}$$
. sin5x, find $\frac{dy}{dx}$

i) If
$$y = \log[\tan(4 - 3x)]$$
, find $\frac{dy}{dx}$

- j) Find $\frac{dy}{dx}$ if $x = 3at^2$ and $y = 2at^3$.
- k) Show that there exist a root of the equation $x^3 4x + 1 = 0$ in the interval (1, 2).
- 1) Find the first iteration by using Jacobi's method for the following system of equation 5x - y = 9, x - 5y + z = -4, y - 5z = 6.

20 Marks

17216

Time: 3 Hrs.

Q.2 Attempt any FOUR of the following

- a) Find modulus and argument of $\frac{1}{2} \frac{\sqrt{3}}{2}i$, hence express in polar form.
- b) Simplify using De Moivre's Theorem $\frac{(\cos 2\theta + i\sin 2\theta)^3(\cos 3\theta - i\sin 3\theta)^4}{(\cos \theta + i\sin \theta)^2(\cos 2\theta - i\sin 2\theta)^{-3}}$
- c) Use De Moivre's theorem to solve $x^4 + 1 = 0$.
- d) If x + iy = sin(A + iB) prove that i) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$ ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$
- e) If $f(x) = \frac{x+2}{4x-3}$ and $t = \frac{2+3x}{4x-1}$. Show that f(t) = x.

f) If
$$f(x) = \tan x$$
, show that
i) $f(2x) = \frac{2f(x)}{1 - [f(x)]^2}$ ii) $f(\alpha + \beta) = \frac{f(\alpha) + f(\beta)}{1 - f(\alpha) \cdot f(\beta)}$

Q.3 Attempt any FOUR of the following

a) If $f(t) = 50\sin(100\pi t + 0.04)$, show that $f(\frac{2}{100} + t) = f(t)$ b) If $f(x) = \log(\frac{1+x}{1-x})$, prove that $f(\frac{2x}{1+x^2}) = 2f(x)$

c) Evaluate
$$\lim_{x \to 3} \left[\frac{1}{x-3} - \frac{3}{x^3 - 5x^2 + 6x} \right]$$

d) Evaluate
$$\lim_{x \to 2} \left[\frac{x^4 - 8x}{\sqrt{x^2 + 5} - 3} \right]$$

e) Evaluate
$$\lim_{x \to 0} \left[\frac{\cos 4x - \cos 6x}{x^2} \right]$$

f) Evaluate
$$\lim_{x \to 0} \left[\frac{6^x - 3^x - 2^x + 1}{x^2} \right]$$

Q.4 Attempt any FOUR of the following

a) Using first principle find derivative of $f(x) = \sin x$.

b) If u and v are differentiable functions of x and y = u.v, than prove that

$$\frac{dy}{dx} = u.\frac{dv}{dx} + v.\frac{du}{dx}$$

16 Marks

16 Marks

c) If
$$y = \tan^{-1}\left(\frac{\sin x}{1+\cos x}\right)$$
. find $\frac{dy}{dx}$

d) If $x^3 + y^3 = 3axy$, find $\frac{dy}{dx}$ e) Find the derivative of $(\sin x)^{\cos x}$ f) If $x^y = e^{x-y}$ then prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$

Q.5 Attempt any FOUR of the following

16 Marks

- a) Evaluate $\lim_{x \to 0} \left[\frac{\sin 2x \cdot \tan 4x \cdot \log(1 + x^2)}{x^4} \right]$ b) Evaluate $\lim_{x \to 3} \left[\frac{\log x - \log 3}{x - 3} \right]$
- c) Using Bisection method find the approximate root of $x^3 x 4 = 0$ [Carry out three iterations only].
- d) Find the approximate root of the equation $x^3 x 1 = 0$ by using Regula false position method (Carry out three iterations only)
- e) By using Newton- Raphson method find the positive root of $x^2 + x 5 = 0$ correct to three decimal places.
- f) Using Newton- Raphson method find approximate value of $\sqrt[3]{100}$, perform three iterations.

Q.6 Attempt any FOUR of the following

a) If
$$y = e^{m \sin^{-1} x}$$
, prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0$.

b) If
$$x = a (\theta - \sin \theta)$$
 and $y = a (1 - \cos \theta)$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{4}$

- c) Solve the following equations by Gauss elimination method 4x + y + 2z = 12, -x + 11y + 4z = 33, 2x 3y + 8z = 20
- d) Solve the following equations by Jacobi's method, by performing three iterations only
 - 10x + y + 2z = 13, 3x + 10y + z = 14, 2x+3y + 10z = 15
- e) Solve the following equations by Gauss- Seidal method taking two iterations 10x + y + z = 12, x + 10y + z = 12, x + y + 10z = 12
- f) With the following system of equation 5x y = 9, 5y z = 6, x + 5z = -3. Set up the Gauss- Seidal iterations scheme for solution. Iterate two times, using initial approximations $x_0 = 1.8$, $y_0 = 1.2$, $z_0 = -0.96$.